Example Page (Standard Deviation)

Here are a few examples of sample and population standard deviation to learn how to calculate them manually.

Example 1: For sample standard deviation

Determine the sample standard deviation of 15, 16, 19, 21, 23, 26, 30, 32, 36, 42.

 

Solution

 

Step 1: First of all, find the sample mean (x̅) by taking the sum of sample data values and divide it by the total number of observations.

 

Sum of sample values = 15 + 16 + 19 + 21 + 23 + 26 + 30 + 32 + 36 + 42

                                    = 260

 

Total number of observation = n = 10

 

Sample mean of data set = x̅ = 260/10 = 130/5

                                        = x̅ = 26

 

Step 2: Now find the deviation (difference of each data value from the mean) and take its square to make all the calculations positive.

 

Data values (xi)(xi - x̅ ) (xi - x̅ )2
1515 - 26 = -11(-11)2 = 121
1616 - 26 = -10(-10)2 = 100
1919 - 26 = -7(-7)2 = 49
2121 - 26 = -5(-5)2 = 25
2323 - 26 = -3(-3)2 = 9
2626 - 26 = 0(0)2 = 0
3030 - 26 = 4(4)2 = 16
3232 - 26 = 6(6)2 = 36
3636 - 26 = 10(10)2 = 100
4242 - 26 = 16(16)2 = 256

 

Step 3: Now find the summation of the squared deviations.

 

∑ (xi - x̅)2 = 121 + 100 + 49 + 25 + 9 + 0 + 16 + 36 + 100 + 256

                = 712

 

Step 4: Now divide the summation of the squared deviations by (N – 1) and the result will be the variance of the data set.

 

∑ (xi - x̅)2/(N-1) = 712 / 10 – 1

                           = 712 / 9

                           =  79.11

 

Step 6: Take the square root of the quotient and the summation of the squared deviations by N – 1 to get the sample standard deviation.

 

√ [∑ (xi - x̅)2 / (N–1)] = √79.11

                                =  8.894

Example 2: For population standard deviation

Determine the population standard deviation of 5, 9, 11, 17, 19, 22, 26, 29, 34, 38.

 

Solution

 

Step 1: First of all, find the population mean (μ) by taking the sum of population data values and divide it by the total number of observations.

 

Sum of population values = 5 + 9 + 11 + 17 + 19 + 22 + 26 + 29 + 34 + 38

                                         = 210

 

Total number of observation = n = 10

 

Mean of population data set = μ = 210/10 = 105/5

                                             = μ = 21

 

Step 2: Now find the deviation (difference of each data value from the mean) and take its square to make all the calculations positive.

 

Data values (xi)xi - μ (xi - μ)2
55 - 21 = -16(-16)2 = 256
99 - 21 = -12(-12)2 = 144
1111 - 21 = -10(-10)2 = 100 
1717 - 21 = -4(-4)2 = 16
1919 - 21 = -2(-2)2 = 4
2222 - 21 = 1(1)2 = 1
2626 - 21 = 5(5)2 = 25
2929 - 21 = 8(8)2 = 64
3434 - 21 = 13(13)2 = 169
3838 - 21 = 17(17)2 = 289

 

Step 3:Now find the sum of squared deviations.

 

∑ (xi - μ)2 = 256 + 144 + 100 + 16 + 4 + 1 + 25 + 64 + 169 + 289

                = 1068

 

Step 4: Now divide the summation of the squared deviations by N.

 

∑ (xi - μ)2 / N = 1068 / 10

                      = 534 / 5

                      = 106.8

 

Step 6: Take the square root of the quotient and the summation of the squared deviations by N to get the population standard deviation.

 

√ [∑ (xi - μ)2 / N] = √106.8

                          = 10.334